extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23xC4).1S3 = C2xA4:C8 | φ: S3/C1 → S3 ⊆ Aut C23xC4 | 48 | | (C2^3xC4).1S3 | 192,967 |
(C23xC4).2S3 = C4xA4:C4 | φ: S3/C1 → S3 ⊆ Aut C23xC4 | 48 | | (C2^3xC4).2S3 | 192,969 |
(C23xC4).3S3 = C24.3D6 | φ: S3/C1 → S3 ⊆ Aut C23xC4 | 48 | | (C2^3xC4).3S3 | 192,970 |
(C23xC4).4S3 = A4:M4(2) | φ: S3/C1 → S3 ⊆ Aut C23xC4 | 24 | 6 | (C2^3xC4).4S3 | 192,968 |
(C23xC4).5S3 = C24.4D6 | φ: S3/C1 → S3 ⊆ Aut C23xC4 | 48 | | (C2^3xC4).5S3 | 192,971 |
(C23xC4).6S3 = C2xA4:Q8 | φ: S3/C1 → S3 ⊆ Aut C23xC4 | 48 | | (C2^3xC4).6S3 | 192,1468 |
(C23xC4).7S3 = C2xC12.55D4 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).7S3 | 192,765 |
(C23xC4).8S3 = C2xC6.C42 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 192 | | (C2^3xC4).8S3 | 192,767 |
(C23xC4).9S3 = C4xC6.D4 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).9S3 | 192,768 |
(C23xC4).10S3 = C24.73D6 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).10S3 | 192,769 |
(C23xC4).11S3 = C24.74D6 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).11S3 | 192,770 |
(C23xC4).12S3 = C22xDic3:C4 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 192 | | (C2^3xC4).12S3 | 192,1342 |
(C23xC4).13S3 = C24.6Dic3 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 48 | | (C2^3xC4).13S3 | 192,766 |
(C23xC4).14S3 = C24.75D6 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).14S3 | 192,771 |
(C23xC4).15S3 = C22xC4.Dic3 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).15S3 | 192,1340 |
(C23xC4).16S3 = C2xC12.48D4 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).16S3 | 192,1343 |
(C23xC4).17S3 = C22xC4:Dic3 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 192 | | (C2^3xC4).17S3 | 192,1344 |
(C23xC4).18S3 = C2xC23.26D6 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 96 | | (C2^3xC4).18S3 | 192,1345 |
(C23xC4).19S3 = C23xDic6 | φ: S3/C3 → C2 ⊆ Aut C23xC4 | 192 | | (C2^3xC4).19S3 | 192,1510 |
(C23xC4).20S3 = C23xC3:C8 | central extension (φ=1) | 192 | | (C2^3xC4).20S3 | 192,1339 |
(C23xC4).21S3 = Dic3xC22xC4 | central extension (φ=1) | 192 | | (C2^3xC4).21S3 | 192,1341 |