extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C4)⋊1S3 = C24.5D6 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 24 | | (C2^3xC4):1S3 | 192,972 |
(C23×C4)⋊2S3 = C2×C4×S4 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 24 | | (C2^3xC4):2S3 | 192,1469 |
(C23×C4)⋊3S3 = C2×C4⋊S4 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 24 | | (C2^3xC4):3S3 | 192,1470 |
(C23×C4)⋊4S3 = C24.10D6 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 24 | 6 | (C2^3xC4):4S3 | 192,1471 |
(C23×C4)⋊5S3 = C24.76D6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4):5S3 | 192,772 |
(C23×C4)⋊6S3 = C22×D6⋊C4 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4):6S3 | 192,1346 |
(C23×C4)⋊7S3 = C2×C4×C3⋊D4 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4):7S3 | 192,1347 |
(C23×C4)⋊8S3 = C2×C23.28D6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4):8S3 | 192,1348 |
(C23×C4)⋊9S3 = C2×C12⋊7D4 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4):9S3 | 192,1349 |
(C23×C4)⋊10S3 = C24.83D6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 48 | | (C2^3xC4):10S3 | 192,1350 |
(C23×C4)⋊11S3 = C23×D12 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4):11S3 | 192,1512 |
(C23×C4)⋊12S3 = C22×C4○D12 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4):12S3 | 192,1513 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C4).1S3 = C2×A4⋊C8 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 48 | | (C2^3xC4).1S3 | 192,967 |
(C23×C4).2S3 = C4×A4⋊C4 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 48 | | (C2^3xC4).2S3 | 192,969 |
(C23×C4).3S3 = C24.3D6 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 48 | | (C2^3xC4).3S3 | 192,970 |
(C23×C4).4S3 = A4⋊M4(2) | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 24 | 6 | (C2^3xC4).4S3 | 192,968 |
(C23×C4).5S3 = C24.4D6 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 48 | | (C2^3xC4).5S3 | 192,971 |
(C23×C4).6S3 = C2×A4⋊Q8 | φ: S3/C1 → S3 ⊆ Aut C23×C4 | 48 | | (C2^3xC4).6S3 | 192,1468 |
(C23×C4).7S3 = C2×C12.55D4 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).7S3 | 192,765 |
(C23×C4).8S3 = C2×C6.C42 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 192 | | (C2^3xC4).8S3 | 192,767 |
(C23×C4).9S3 = C4×C6.D4 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).9S3 | 192,768 |
(C23×C4).10S3 = C24.73D6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).10S3 | 192,769 |
(C23×C4).11S3 = C24.74D6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).11S3 | 192,770 |
(C23×C4).12S3 = C22×Dic3⋊C4 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 192 | | (C2^3xC4).12S3 | 192,1342 |
(C23×C4).13S3 = C24.6Dic3 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 48 | | (C2^3xC4).13S3 | 192,766 |
(C23×C4).14S3 = C24.75D6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).14S3 | 192,771 |
(C23×C4).15S3 = C22×C4.Dic3 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).15S3 | 192,1340 |
(C23×C4).16S3 = C2×C12.48D4 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).16S3 | 192,1343 |
(C23×C4).17S3 = C22×C4⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 192 | | (C2^3xC4).17S3 | 192,1344 |
(C23×C4).18S3 = C2×C23.26D6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 96 | | (C2^3xC4).18S3 | 192,1345 |
(C23×C4).19S3 = C23×Dic6 | φ: S3/C3 → C2 ⊆ Aut C23×C4 | 192 | | (C2^3xC4).19S3 | 192,1510 |
(C23×C4).20S3 = C23×C3⋊C8 | central extension (φ=1) | 192 | | (C2^3xC4).20S3 | 192,1339 |
(C23×C4).21S3 = Dic3×C22×C4 | central extension (φ=1) | 192 | | (C2^3xC4).21S3 | 192,1341 |